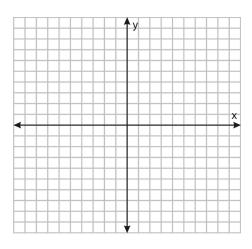

(MATH 5)

Name:

Exponentials Homework #7

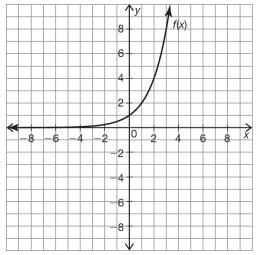
 Rochely and Emileydi are selling horchata to their neighbors. They both start selling the cups for \$2. Rochely increases the cost by \$0.50 every day, while Emileydi increases the cost by 50%.


Days Since They Started Selling Horchata	Rochely's Price	Emileydi's Price
0	\$2	\$2
1		
2		
3		
4		
5		
20		

- 2. In Bolivia, the population was 10.5 million people in the year 2010 and it continuously increases by 1.6% annually.
 - a. Write a function to model the population, N(t), with respect to time, t.
 - b. Using your function, predict what Bolivia's population will be in 2030.
 - c. Using your function, predict what Bolivia's population was in 2000.

Directions: Graph the exponential functions and list the key characteristics. 2. $g(x) = (\frac{1}{4})^x$

1. $f(x)=4^{x}$


Domain	
Range	
Asymptote	
X-Intercept	
Y-Intercept	
End Behavior	
Interval of Increase/Decrease	

			¶у		
			y		
_					
					v
-					X
_					
_					
-					

Domain	
Range	
Asymptote	
X-Intercept	
Y-Intercept	
End Behavior	
Interval of Increase/Decrease	

Directions: Graph the transformation and describe each of the transformations.

1. $g(x) = \frac{1}{2}f(-x) + 1$

f(x) was _____

_____to obtain g(x).