(MATH 4/5 H)

Power & Polynomial Functions Homework #7

Directions: Sketch a graph of each of the following functions and identify the end behaviors.

1. $f(x)=x^8$

2. $g(x)=x^5$

3. $h(x) = -x^8$

4. $j(x) = -x^5$

Directions: Determine the type of symmetry of the function below (even/odd) and explain your reasoning.

1.
$$m(x)=x^5-x^3+x^2-x+1$$

2.
$$n(x) = -x^6 + x^4 - x^2 + 1$$

Directions: Graph the transformations of the power functions and describe the transformations.

1. g(x)=f(-x+3)+1

f(x) was _____

_____ to get g(x).

2.	レノマ		$i(\frac{1}{2}X)$
∠.	NIA	, — –	II /2A

_____ to get k(x).

Directions: Sketch a graph of each of the functions given the characteristics.

1. f(x) is a negative degree 5 function that has a y-intercept at y=2 and x-intercepts at x=4, x=2, x=-3, x=7, and x=-1.

2. g(x) is an even degree function that has an absolute maximum at (2,6) and xintercepts at x=5 and x=-1.

