\qquad Period: \qquad Due Date: January 22, 2018
(MATH 4/5 H)

Sequences \& Series Homework \#2

Directions: Factor each of the polynomials completely.

1. $2 w^{2}-7 w+5$
2. $3 r^{2}+9 r+6$

Directions: Determine what type of sequence each is (arithmetic, geometric, or neither) and write an explicit formula for each sequence (if possible).

1. $-4,-7,-10,-13, \ldots$
2. $1,-1 / 2,1 / 4,-1 / 8, \ldots$

This sequence is \qquad This sequence is \qquad
because \qquad because \qquad
\qquad . \qquad .

Directions: Use sigma notation to rewrite each finite series and calculate the given series.

1. $4+8+12+16+20 ; S_{3}$
2. $-1+1+(-1)+1+(-1)+1 ; S_{6}$
3. $3+(-2)+1+(-4)+(-1) ; S_{5}$
4. $3+5+7+9+11 ; S_{4}$

Directions: Use Gauss' formula to calculate the sum of the first 12 terms of the arithmetic sequence.

1. $-1,-2,-3, \ldots$
2. $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}, \ldots$

Directions: Use Euclid's formula to compute the sum of the first 15 terms of the geometric sequences.

1. $2,6,18,54,162, \ldots$
2. $1,-4,16,-64,256, \ldots$
